Project Name:
OCR (Optimal Character Recognition) & Translation

Group members:

Annie Lin
annielin@college.harvard.edu
Hillary Do
hillaryjiado@college.harvard.edu

Nhu Nguyen
nhunguven@college.harvard.edu
Keon Ho (Chris) Lim
klim0O1@college.harvard.edu

Brief Overview
We are going to try to build a machine learning program that will recognize characters from an image file
and return computer-readable text, such as what http://www.free-ocr.com/ does. To accomplish this,

we are thinking of writing functions that will separate the image into sections for each character, then we
will examine those sections to determine what character each of the sections contain. We will use
different criteria, patterning matching, and criteria from previous examples to determine what the
characters will be. We have different level goals for the project. Minimally, we would like to implement
OCR that will recognize binary characters (0's and 1's) and translate the text from that binary. Our next
goals would be to get our program to recognize all numbers, characters, then symbols. If we accomplish
that, we hope to be able to recognize and translate code into text and then compile that code.

Feature List
Core Features
e We will recognize binary (0's and 1's) with our program using a core matrix matching OCR
algorithm as describe in
http://en.wikipedia.org/wiki/Optical_character_recognition#Character_recognition.
e We will translate that binary into text (ASCII) using CS50 knowledge
http://www.cplusplus.com/doc/ascii/.

Cool Features
e With our OCR algorithm:
o We will recognize all numbers.
o We will recognize all english characters.
o We will recognize symbols.
e If the inputted image contains code, we will recognize the characters, and compile the code.

mailto:annielin@college.harvard.edu
mailto:hillaryjiado@college.harvard.edu
mailto:nhunguyen@college.harvard.edu
mailto:klim01@college.harvard.edu
http://www.google.com/url?q=http%3A%2F%2Fwww.free-ocr.com%2F&sa=D&sntz=1&usg=AFQjCNHHM08lkZJPo-gFtpTXvLCuM593wg
http://www.google.com/url?q=http%3A%2F%2Fwww.free-ocr.com%2F&sa=D&sntz=1&usg=AFQjCNHHM08lkZJPo-gFtpTXvLCuM593wg
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FOptical_character_recognition%23Character_recognition&sa=D&sntz=1&usg=AFQjCNFEH0hrClKEkk-bXl4-1TB3FRkGsw
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FOptical_character_recognition%23Character_recognition&sa=D&sntz=1&usg=AFQjCNFEH0hrClKEkk-bXl4-1TB3FRkGsw
http://www.google.com/url?q=http%3A%2F%2Fwww.cplusplus.com%2Fdoc%2Fascii%2F&sa=D&sntz=1&usg=AFQjCNFPRpRBRvE7gUYfFVqYAYRkUilO5g
http://www.google.com/url?q=http%3A%2F%2Fwww.cplusplus.com%2Fdoc%2Fascii%2F&sa=D&sntz=1&usg=AFQjCNFPRpRBRvE7gUYfFVqYAYRkUilO5g

Technical Specification

We will have two classes, images and characters (numbers and symbols will be subclasses of

characters).

Some of the functions we are planning on implementing include:

If I Were A Character: We want to separate what are characters and what are not characters,

so basically white from the what the color of the text will be. We are planning on doing this by
utilizing color saturation, and how different parts of the image are from others.

Partitioning: We would like to be able to separate the image into blocks that will contain
individual pixels. When we come across a black pixel, we determine the bounds of that
character by searching for the upward, downward, leftmost, and rightmost bounds by traversing
through the contiguous black pixels; these bounds would then form the location and dimensions
of the box. The boxes for each character are stored in some data structure, which are then fed
into the next stages.

Pixels Run the World: Since each character is a set of pixels, we will implement a function that
analyzes the interaction between pixels and how they are arranged in relation to each other. “0”
will have more black pixels than “1”. The pixels in “1” are arranged differently, specifically “1”
has more lines and sharp angles than “0”, whereas “0” is more curvy than “1”. Examining the
pixels intersections will tell us where the lines and curves occur. By looking at how each pixel is
placed in relation to its surrounding pixel, we can define the feature of the character that defines
itself. Alternatively, we can analyze the width-height relation between the characters. “0”’s width

299

is significantly larger than “1”’s width, thus we can easily distinguish these characters based on
width. The white area in between “0” needs to be taken into consideration because it
determines how wide the character is. We can also do this by considering the color intensity of
each pixel, since pixels on the edge of each character are lighter than pixels in between the
edges.

All the Single Characters, Now Put a Cluster on It: Suppose we have a dataset of images,

each representing a number. By creating ten representative clusters, one for each number, we
can group data based on how they correspond to the cluster center. We plan on creating a
clustering algorithm based on measuring distance to group them. We will look at them as a 2-d
vector, analyzing the mean across a set of points and group them based on that.

Irreplaceable Text: We have to put the characters that we recognize together and convert it to a
stream of text. This involves taking in a “box” (from partitioning) as an input, determining the
character (from above), and appending it to a buffer/string.

We think that we could be leaving out some important functions, or missing some ways for

modularization, but we will figure it out once we do more research/get more feedback and start coding.

(1] Tuhe Rt

@mrauke ® separate
+he colors 4ne block A
black parits into
blecks @ Clugter groups

Next Steps
Before before we begin writing our final technical specification for the next checkpoint, we will have:
e determined what language we are using. (We are thinking of doing our program in Java, but we

will research other languages with good core libraries that will help to accomplish our purposes.
)
set up our environment. (We will just be using the CS50 Appliance.)
done more research. (We will try to do more research on how other entities have done OCR,
and perhaps check our implementations of OCR in other languages.)

